
LUARM – An audit engine for insider misuse
detection

George Magklaras Steven Furnell and Maria Papadaki

Center for Security, Communications and Networks Research,
School of Computing and Mathematics, University of Plymouth,

Plymouth, Devon, PL4 8AA, United Kingdom
e-mail: georgios.magklaras@plymouth.ac.uk

Abstract

'Logging User Actions in Relational Mode' (LUARM) is an open source audit engine
for Linux, although it can be easily ported to other Unix based systems. It provides a
near real-time snapshot of a number of user action data such as file access, program
execution and network endpoint user activities, all organized in easily searchable
relational tables. LUARM attempts to solve two fundamental problems of the insider
IT misuse domain. The first concerns the lack of insider misuse case data
repositories that could be used by post-case forensic examiners to aid an incident
investigation. The second problem relates to how information security researchers
can enhance their ability to specify accurately insider threats at system level. This
paper presents LUARM's design perspectives and a 'post mortem' case study of an
insider IT misuse incident. The results show that the prototype audit engine has a
good potential to provide a valuable insight into the way insider IT misuse incidents
manifest on IT systems and can be a valuable complement to forensic investigators
of IT misuse incidents.

Keywords

insiders, misuse, detection, auditing, logging, forensics

1. Introduction

The problem of insider IT misuse (the term ‘misuse detection’ or
‘misuse’ is also used in the literature) is a very real threat for the health
of IT infrastructures and requires its own domain in the information
security world (Furnell, 2004). The term 'threat' in an IT infrastructure
can be regarded as a “set of circumstances that has the potential to
cause loss or harm” (Pfleeger et al, 2003). As a result, in legitimate
user context, these circumstances might involve intentional IT misuse
activities such as targeted information theft, introducing or accessing

inappropriate material, and accidental misuse (e.g. unintentional
information leak).

Numerous studies have tried to define the term “insider” in the context
of Information Security. This is because there are many possible sub-
contexts that are applicable to shedding light on different aspects of
what an insider is and what she can do. A generic definition focusing
on the attributes of the insider, from an organizational trust point of
view is the following (Probst et al, 2009):”An insider is a person that
has been legitimately empowered with the right to access, represent, or
decide about one or more assets of the organization's structure”. This
definition has a wide perspective and emphasizes a key aspect of an
insider: that of trust. Trust is a property that goes beyond an IT system
oriented view (system credentials, actions, indications). Whilst people
who constitute direct threats might not have access to IT access
credentials, they still can decide on policies, equipment procurement
and other issues that can affect the well being of an IT infrastructure.
A good example is an IT director that spends millions on a state of the
art security system but does not bother to emphasize or make policies
that dictate the flow of information inside the organization (employ
that bypasses the system with a simple USB key, intentionally or
accidentally).

Providing a way to detect threats and sense vulnerabilities is vital for
the process of insider threat mitigation. One way to capture the
essence of insider threats is to look at the way they occur in the real
world. There are two sources of information to help us derive
conclusions. One consists of insider case reports, as they are reported
by the press. The other source of information is an established
information security survey which provides a quantitative view of the
problem manifestation.

The most widely known insider misuse cases are usually about
intellectual property theft. The arrest of Lan Lee and Yuefei Ge by FBI
agents (Cha, 2008) is a classic case. The arrested men were engineers
of NetLogic Microsystems (NLM) until July 2003. During the time of

their employment, they were downloading trade sensitive documents
from the NLM headquarters into their home computers. These
documents contained detailed descriptions of the NLM microprocessor
product line and funded a startup made by the two engineers.
Eventually, their ties to the Chinese government and military were
discovered by investigators.

A last example of how important are the consequences of insider
actions is the recent Wikileaks case (Greenmeier et al, 2010), where
hundreds of thousands of classified government documents were
circulated to the public and caused even widespread diplomatic
problems. Irrespective of motives and whether revealing this kind of
information is right or wrong, the fact is that part of the Wikileaks
material came as a result of whistle-blowing insiders, which misused
their privileges to obtain the material in electronic form.

The previous case examples capture the extent to which insider actions
(intentional or not) can be devastating. The actual frequency of insider
IT misuse manifestation is revealed by information security surveys.
The CSI 2009 survey (Richardson, 2009) has some interesting
quantitative findings about insider IT misuse. The survey states that
43.2 percent of its 443 respondents stated that at least some of their
losses were attributable to malicious insiders, whereas 16.1 percent of
respondents estimated that nearly all their losses were due to the non-
malicious, merely careless behavior of insiders. A comparable figure
from the Information Security Breaches Survey 2010 (Potter et al,
2010) mentions that the 46% of their large organization respondents
had data stolen or lost as a result of insider actions, placing an
emphasis on the lack of security culture and its contribution to
accidental insider IT misuse.

However, both mass media case descriptions and surveys do not
provide the tools nor the methodology to systemically study and
mitigate the problem. Insider IT misuse is a multi-factorial problem
and one of the things insider misuse researchers really need is a
repository of more detailed case descriptions with a focus on the

impact insider misuse actions have at computer system level
(NSTISSAM). These case repositories could provide a clearer picture
of how a threat realizes into a misuse act. This is the area of Insider
Threat Specification, the core concept behind the proposed logging
engine which is examined in the next section.

2. Insider Threat Specification and modelling

Threat specifications follow the principles of intrusion specification, a
concept which is not new in the information security world.
Techniques to describe threats exist for an entire range of information
security products, from anti-virus software to several intrusion
detection/prevention systems (IDS/IPS) (Bace, 2000), where threats
are specified by anomaly detection, pattern matching (also known as
misuse detection) mechanisms or a heuristic-based combination of the
two.

Figure 1: Information flow in an insider misuse detection system

Insider Threat Specification is the process of using a standardized
vocabulary to describe in an abstract way how the aspects and
behavior of an insider relate to a security policy defined misuse
scenario. Figure 1 shows the information flow of a typical IT misuse

detection system that uses insider threat specification, illustrating the
relations between user entities, the security and monitoring policies
and the various components of the IT infrastructure.

The security specialist translates the Security (and resulting monitoring
policy) into a set of misuse scenario signatures, standard descriptions
of IT misuse acts that describe the behavior of a user at process
execution, filesystem and network endpoint level (Magklaras et al,
2006). The involvement of a specialist is necessary as the process of
translating from security to monitoring policy is error prone. The
misuse scenario signatures and collected audit data (Bace, 2000) from
the IT infrastructure are fed into a misuse detection engine. For every
unique userid in an authentication domain and signature of the 'Misuse
Scenario signatures' repository, the engine produces a triplet encoded
association in two distinct ways:

• In a threat detection context, where the specialist is interested
to detect a particular type of misuse, the output of the misuse
engine is a triplet of the form { Yes/No,user,signature-id}, i.e.
we have a misuse occurrence or we do not.

• In a threat prediction context, where the specialist is trying to
predict the occurrence of a particular misuse incident, the
output triplet looks like {EPT, user, signature-id}, where EPT
stands for Evaluated Potential Threat, indicating the likelihood
of the occurrence of an incident as dictated by the signature.

Insider threat detection and prediction are important mitigation
techniques. However, in the case of threat prediction, a threat model is
needed to produce the metrics that evaluate the EPT score. Insider
threat modeling is a large topic outside the scope of this paper and the
reader can refer to reviews of models, to gain a better understanding of
how EPT scores are derived by various modelling approaches
(Magklaras et al, 2010).

One important point needs to be emphasized. Vital to insider threat
specification is the structure and content of the audit record, at the
center of Figure 1. If the audit record is incomplete, in terms of the

type of information we need to log or unavailable, because the data are
vanished due to bad system design or intentional data corruption, the
specification of insider threats is useless. This is where LUARM
comes into the game.

3. Insider misuse detection auditing and its requirements

Bace (Bace, 2000) discusses intrusion detection (and hence misuse
detection) as an audit reduction problem. Audit reduction is the
process of filtering the relevant information out of the audit records, in
order to infer a partially or fully realized threat and excluding
information that is irrelevant or redundant. In the process of designing
an insider threat detection system, a great deal of emphasis should be
placed on the content and structure of audit records, as they constitute
the source of information of every misuse detection system.

The balance between too little and too much information on the audit
record is a difficult one. Providing too much information makes the
task of audit reduction difficult and not scalable, as the number of
monitored system grows. In addition, redundant or irrelevant
information might be difficult to relate to language semantics. In
contrast, collecting data at a too coarse a level of detail can exclude
vital information for the presence of a threat, cause false negative
assessments and reduce the expressiveness of a misuse detection
language.

The structure of an audit record is also important for a misuse
detection system. A good structure has well defined fields that can be
easily parsed. Moreover, the structure of the audit record should easily
facilitate relational type (Codd, 1990) queries. It is necessary for the
information to be applied on the disjunction (OR), conjunction (AND),
and negation (NOT) operators, in order to increase the query
versatility and speed of response.

Figure 2: Events-to-user correlation in plain audit records

A final desired aspect of a suitable crafted audit record format for
insider misuse detection is clear user accountability. This means that
the audit record should be able to reliably and easily associate user
entities to recorded actions. This desired mapping means that each
recorded action could also be correlated to other actions of the same
user, so that a set of actions can be related to a threat and the query
language has enough information to perform step instance selection.
Figure 2 illustrates such a correlation, by showing parts of the process
execution and network endpoint creation log of a hypothetical audit
record engine.

Let us assume that we wish to find whether user 'toma' has accessed
the website 'www.suspicious.org', via a web browser, between 13:40
and 14:00 hours on the 25th of September 2010. In order to find such
an event, we need to intercept the launching of a web browser process
by user entity 'toma'. We would assume that the web browser will
generate a network connection to 'www.suspicious.org'. The way one
can relate the two events as part of a complex event (step instance
selection) is to match the two events against a set of common
identifiers, such as the process ID (PID), parent process ID (PPID) and
username. This assumes that the process ID launching record has both

PID and PPID data inside each process execution record. It also
assumes that the corresponding network endpoint log structure has a
corresponding PID and username field that could be correlated.

The log snapshot of Figure 2 shows that there are two instances of user
'toma' executing a web browser. Only one of them is relevant and the
correlation can be performed because the PID and username are
recorded in the network endpoint and the process execution audit
records. In particular, only PID 24210 has connected to
www.suspicious.org, which was started by a shell process (PPID
24208) of user 'toma'. The wealth and replication of vital information
in various types of audit records is a requirement for proper event
correlation and step instance selection.

Another important issue of audit record engines is that of referencing
time. In large IT infrastructures that span several networks and time
zones, audited systems might report in different time formats. They
can also experience 'clock skew', a difference in time recorded
amongst computer systems due to computer clock hardware
inaccuracies, especially when an NTP (Mills et al, 2010) server is not
available to provide a reliable time source. Clock skew is common
amongst mobile components of the IT infrastructure, as well as
amongst operating systems that run in virtual mode (Matthews et al,
2008). An audit record engine should resolve that problem and make
sure that every record is entered into the log set by having a correct
time stamp.

Finally, audit record engines should provide a scalable storage system
to keep a large number of audit records available for future reference.
Modern IT environments that consist of a large number of multi-user
serving devices of different kinds can easily produce a large amount of
data. If the stored information is consolidated to a single place, a
natural choice for data availability and correlation, the amount of data
can quickly overwhelm traditional file based storage approaches.

One of the earliest and most commonly referenced works that concern
the format of audit records is the US Government's Trusted Computer
System Evaluation Criteria (TCSEC – 'Orange Book') (DOD 5200.28-
std). This was a structured evaluation process (Trust Levels) that
specified the features and assurances required for operating systems
and application software to contain and process classified information.
As part of these assurance features, the 'Orange Book' specified
extensive lists of events that audit systems should monitor. However,
these lists were provided without guidelines for selection, so that an
analyst could abstract what is being monitored and choose a set of
them. Moreover, the 'Orange Book' audit requirements did not provide
any specification for the structure and storage of audit records.

These omissions, as well as the age of the drawn requirements led to
the cancellation of the Orange Book by the US Department of
Defense. The work is now purely a historic evidence of the need to
draw audit requirements for operating systems. Instead, the Common
Criteria for Information Technology Security Evaluation (Common
Criteria Portal, 2009) standards have taken over the Orange Book's
role. The Common Criteria (CC) effort does not fully address the
previously mentioned audit record requirement omissions of its
predecessor, the Orange Book. Despite enjoying an impressive
industry product certification scheme and some criticism over the
feasibility of implementing the listed requirements due to complexity
(Jackson, 2007), the CC effort has still to produce a comprehensive
array of audit requirements. In comparison to the Orange Book, the
CC provide a more structured audit functional requirement list, but
still, no substantial discussions with regards to the content, format and
storage of audit records.

However, we do take note of some of the high level functional audit
requirements of their 321 page document (Common Criteria Portal,
2009). In particular, CC requirement 88 of section 8.2 states that: “At
FAU_GEN.2 User identity association, the TSF shall associate
auditable events to individual user identities.” In CC terminology TSF
stands for Target of evaluation Security Functionality, meaning
essentially the software and hardware under evaluation.

The CC effort also states the minimum requirements for the content of
an audit record by stating in requirement FAU_GEN.1.2: “The TSF
shall record within each audit record at least the following
information: a)Date and time of the event, type of event, subject
identity (if applicable), and the outcome (success or failure) of the
event; ...”. This is in-line with the previously discussed issues about
user accountability and temporal information. The outcome of the
event might be a tricky to implement, depending on the context of the
event. For some types of events that are atomic (i.e., an attempt to
execute a file), logging success or failure is meaningful (i.e. to log that
an attempt was made to execute a file might be an interesting fact) and
feasible (this can be easily performed by monitoring for exit codes or
testing for the execution of the program by using the userid
credentials) . For other types of events that are more complex and
concern many intermediate steps (binary program that performs many
actions that do not always follow the same order/execution path) this is
less trivial to implement, as it requires tapping to the actual system
calls level or other proprietary application logs.

The second CC requirement that concerns audit record storage is that
of FAU_STG (section 8.6) (Common Criteria Portal, 2009). Actually,
this is a set of requirements that concern various aspects of the audit
record storage. We quote from the requirements text:“At FAU_STG.1
Protected audit trail storage, requirements are placed on the audit trail.
It will be protected from unauthorised deletion and/or modification.
FAU_STG.2 Guarantees of audit data availability, specifies the
guarantees that the TSF maintains over the audit data given the
occurrence of an undesired condition. FAU_STG.3 Action in case of
possible audit data loss, specifies actions to be taken if a threshold on
the audit trail is exceeded. FAU_STG.4 Prevention of audit data loss,
specifies actions in case the audit trail is full. “. Once again, the
requirements are given in high-level terms, specifying that:

• unauthorized deletion and/or modification of audit records

• any other condition that could cause storage failure.

should be mitigated.

This section concludes the list of 'must have' properties of an audit
engine for insider misuse auditing. The next section discusses how
most of today's audit engines fair against these requirements.

4. Existing audit record engines

Audit record engines have been around for a long time, since the very
early days of operating systems. The following paragraphs will review
a number of existing audit record engine specifications and solutions.
The goal is to show that they do not fit all the requirements of misuse
detection engines, as discussed in the previous paragraphs, and hence
justify why LUARM was built from scratch, as an audit engine
solution for insider threat specification.

The point behind the Orange Book (DOD 5200.28-std) and CC
(Common Criteria Portal, 2009) is that they are both specifications and
not implementations of audit record engines. However, several audit
record engine implementations can be found in the literature.

The most common variety of audit record engines uses information
that comes directly from the Operating System. Characteristic
examples of this category of engines are Oracle's Basic Security
Module (BSM) auditing system (Oracle Corporation, 2010) and its
open source implementation OpenBSM (Trusted BSD Project portal,
2009), the psacct audit package (psacct utilities, 2003), as well as the
syslogd (Gerhards, 2009) and WinSyslogd (Monitorware's website,
2010) applications (the latter runs on Windows operating systems).

The BSM audit system has seen widespread deployment in
commercial server grade operating systems. It structures its audit
records in binary (non human plain text readable) files. Audit trail
management commands are then used to decode the binary form of
these files and produce human readable output.

Figure 3: The BSM audit record format

Each BSM audit record is a series of byte encoded tokens. Figure 3
shows a typical structure of a BSM audit record and a corresponding
decoded plain text example of an audited successful login entry.
Actual audit records might vary in terms of the type and order of
tokens. The Header token marks the start of the audit record.
Argument and Data tokens normally contain data about the command
and the arguments that caused an event. The Subject token states
which process triggered the generation of the audit record. Finally, the
Return token contains values that are returned by the process execution
and can help the audit reviewer determine the success or failure of a
command (the reader might recall CC (Common Criteria Portal, 2009)
requirement FAU_GEN.1.2). The OpenBSM initiative (Trusted BSD
Project portal, 2009) has similar audit record structure with minor
differences in the encoding of the different token types.

Pssact (psacct utilities, 2003) is another audit system that generates
operating system based audit trails. Although psacct can be used for
security purposes (system administrators can check login attempts and
user activity per user), its facilities are oriented towards resource usage

accounting. Thus, a system administrator can employ psacct to
produce nice reports about the number of CPU hours spent per
command or user. Figure 4 shows sample psacct output from the
Linux operating system.

Figure 4: psacct statistics

Figure 5: Syslog based audit record aggregation on a plain text file

Syslogd (Gerhards, 2009) and Winsyslog (Monitorware's website,
2010) are examples of widely employed Security Event Manager
(SEM) applications. An SEM aggregates various types of audit records
into a single interface. Audit record aggregation means that
information is accepted not only from operating system audit trails, but
also from third part sources such as security tools or even software
application logs. The interface could be as simple as a human readable
text file (Figure 5) or it can have its own sophisticated Graphical User
Interface (GUI), as shown in Figure 6.

Figure 6: Winsyslog Graphical Console

One obvious thing to observe from all the previously described audit
paradigms is that there is not a consistent audit record format amongst
these log engines. This format diversity might suit specific operating
system environments but it creates many problems, especially when
one needs to devise a mechanism to consolidate logs from different
operating systems and resources. Bishop (Bishop, 1995) was one of
the first to discuss these issues in the context of distributed audit
record engines and to propose various solutions for standardized audit
record formats.

Figure 7 shows a sample of this proposed standard audit record format
(Bishop, 1995) , together with special purpose plain text ASCII based
(ANSI, 1986) field separators. The purpose of these field separators is
to maintain compatibility amongst the character encoding sets of
different operating systems. Whilst many characters encoding

differences have now been addressed by the Unicode standard
(Unicode, 2006), Bishop's work is an interesting reminder of the need
for a standard audit record format.

Figure 7: Standard audit record format by Bishop

Looking back at the previously discussed audit system approaches,
serious deficiencies can be located in terms of using them for insider
threat prediction. Firstly, we have issues that concern the bridging of
the format variability (structure and content) across various operating
systems. Modern SEMs might consolidate information from various
different devices and operating system vendors, but they are far from
describing sufficiently issues in an operating system agnostic way.

In addition, process accounting tools might not cover sufficiently the
variety of different system level information (file, process execution
and network level). In fact, some of them might miss data as described
in (HP Portal, 2003). A logging engine that cannot facilitate the
description of both static and live forensic insider misuse system data
at the network, process and filesystem layer could hinder a forensic
examination of an IT misuse incident. Static digital forensic analysis is
employed by most forensic tools and reveals an incomplete picture of
the system in question. It cannot portray accurately the non-quiescent
(dynamic) state of the system under investigation.

Information such as active network endpoints, running processes, user
interaction data (number of open applications per user, exact
commands), as well as the content of memory resident processes may
not be recorded accurately on non-volatile media. (Hay et al, 2009)
discuss the shortcomings of static digital forensics analysis in detail. In
order to overcome the barriers of static analysis, Adelstein (Adelstein
et al, 2006) discusses the virtues of non-quiescent or live analysis,
which essentially gathers data while the system under-investigation is
operational. A proper IT misuse logging engine has to offer a
combination of static and dynamic data in it logs.

Several audit record systems do not report consistently the timing of
audit record generation. For instance, many implementations of the
syslog audit standard and psacct tools generate the audit record by
entering the time stamp of the client system. If the client system does
not have a reliable time source, this generates inaccurate information
and could seriously hinder event correlation.

An additional issue some audit record engines might not meet the
scalability and data integrity requirements set by CC requirement
FAU_STG.1 (Common Criteria Portal, 2009). Syslog will not always
consolidate data in a central location away from the audited client, as
its default configuration leaves the data on the monitored host. The
same can be said for the BSM standard (Trusted BSD Project portal,
2009), leaving the integrity of audit data at risk. In addition, storing
data in binary or text files might raise issues of storage efficiency and
scalability.

Finally, one of the most serious drawbacks of existing audit
approaches is the inability to store the audit information in a form that
can utilize relational queries. Section 3 discussed the reasoning behind
this requirement. In one sense, some people might argue that this is an
audit management feature rather than an audit log design issue.
However, as section 3 discussed the advantages of using a relational
schema to form audit queries in a structured log record, the author's
view is that everything that increases the expressive power of an audit

log query should be incorporated in the structure of the audit log,
rather than being left as an 'add-on' feature.

For all these reasons, LUARM was designed and built a prototype
audit record engine for insider IT misuse from scratch. The next
section presents the architecture of the proposed audit engine.

5 The LUARM audit engine

LUARM is a prototype Open Source audit record engine (LUARM
portal, 2010) that uses a Relational Database Management System
(RDBMS) (Connoly T. et al, 2004) for the storage and organization of
audit record data.

The employment of an RDBMS system is a core design choice for the
LUARM engine. It offers the necessary data availability, integrity and
scalability features, because most RDBMS tools are explicitly
designed to organize and store large amounts of data. However, the
main reason of placing an RDBMS engine at the core of LUARM is
the ability to have a tremendous flexibility in the process of querying
audit records in a standard manner. The Structured Query Language
-SQL (ISO/IEC, 2008) is a declarative computer language used to
query and process the data stored by RDBMS systems, adhering to the
relational model. In particular, features such as the disjunction,
conjunction and negation operators are part of the language. SQL calls
these predicates and it used them to specify conditions in an accurate
manner. Boolean (true/false/unknown) truth values are used to limit
the effects of statements and queries. In addition, step instance
selection and completion, as well as data correlation can be performed
by using SQL clauses such as 'FROM' and 'WHERE'. Latter
paragraphs will provide LUARM examples using standard SQL
queries.

Figure 8: The LUARM architecture

Figure 8 displays the module client-server architecture of the LUARM
audit engine. On the left of the figure, we can see a set of audited
computer clients. Every client is running a unique instance of a set of
monitoring scripts. Each of the client scripts audits a particular system
level aspect of the operating system: 'netactivity.pl' audits the addition
and creation of endpoints, 'fileactivity.pl' records various file
operations, 'psactivity' provides process execution audit records and
'hwactivity.pl' keeps a log of hardware devices that are connected or
disconnected from the system. The right hand side contains the
centralized server part of the architecture where audit data are stored,
maintained and queried in a MySQL (Oracle MySQL portal, 2010)
based RDBMS (other RDBMS systems could be used as well). The
Perl programming language is used to implement the modules and the
communication between client and server is performed via a Perl DBI
(CPAN-DBI, 2010) interface.

The client-server architecture avoids leaving the data in vulnerable
clients. To prevent issues that affect the scalability of operations and
satisfy data access control isolation (addressing the CC requirements

FAU_SAR.1 and FAU_STG.1). The central host MySQL server has
its own authentication system responsible for controlling who has
access to the audit data. By authenticating audit reviewers against the
RDBMS authentication system, we de-couple the users being audited
from the auditors, a desirable property that ensures that audited
insiders cannot easily manipulate audit data. Furthermore, by assigning
a separate database instance per audited client, we reduce the
likelihood of compromising the data for all clients. If the database
access credentials of one client are compromised, the damage is
limited to the audit data for that client only. Standard RDBMS
mirroring procedures can also ensure data availability on the server
side.

Figure 9: LUARM relational table structure

Figure 9 displays the relational table format for the four main types of
recorded audit data in LUARM: fileaccess, process execution, network
endpoint and hardware device information. Temporal information is
provided by event creation time stamps (cyear, cmonth,

cday,chour,cmin,csec) and respective event destruction time stamps
(dyear,dmonth,dday,dhour,dmin,dsec). The combination of the two
types of timestamps can pinpoint exact time intervals for events in a
consistent format for all recorded event types. In contrast, most audit
systems may provide only event creation time references without
hinting for the duration of an event.

The sampling of events is done at 100 ms intervals. This was an
intentional decision. At first, this might seem problematic as many
attack steps can occur much faster than that amount of time. However,
in an event sampling loop, one has to account for the time delay to
update the database, which can vary from 10ms to 60-70 ms intervals
on heavily loaded clients and servers. In addition, time resolution
varies amongst operating systems. In Linux, the finest granularity of
timing for most computing devices is measured at approximately 10
ms (Love, 2005). The Windows 7 operating system (and its various
derivatives) has a timer granularity of 15.6 ms (Microsoft Portal,
2009). For these reasons, LUARM relies on the Perl Time::HiRes
module (CPAN-HiRes, 2010) to bridge the gap between the different
operating system timer implementations. A time granularity of 100 ms
is also a good compromise between accuracy and scalability. The more
granular the time resolution, the greater the computational load for
both the client and the server LUARM parts.

Each audit record of an event table is identified by a unique table key
of bigint MySQL type. In version 5.1 of the MySQL RDBMS, a
'bigint' numeric type can create up to 18446744073709551615 unique
keys, a number large enough to archive a useful number of events in
each LUARM event table.

Another important design decision that concerns the format of the
audit table was to include common attributes amongst different event
tables for the purposes of increasing the ability to correlate events and
provide user entity accountability, as mentioned by CC requirements
FAU_GEN1.2 and FAU_SEL1.1. For instance, fields such as
'username' (user entity), pid (numeric process ID of the program
responsible for the event creation) and application (string that
represents the name of the application that matches the pid) can be

found in most of the event tables. This enables the audit reviewer to
use SQL and relate events, so he can form queries of the type “Find
the network endpoint created by program x of user y” in an easy
manner.

The use of the MD5 cryptographic hash function (Rivest et al, 1992)
(md5sum field) is used on all event tables for performing audit record
updates in an efficient manner. In particular, every time LUARM
inserts an audit record in a table, it calculates an MD5 sum of several
relevant table fields, in order to uniquely identify the event and keep
track of the record being inserted in the database. On the next audit
record insertion cycle, LUARM generates an MD5 sum of the live
records and compares them to the stored MD5 sums of every active
stored record (a record that has a NULL value for the d* timestamps).
If the MD5 sums do not match the record is inferred as a new one and
is inserted to the database. This is a more efficient way than comparing
multiple fields, in order to perform record updates.

The 'fileinfo' table stores file access related events. The filename
specification consists of two parts. The 'filename' field which holds the
filename with the file extension (i.e. data.txt) and the 'location' field
which contains the absolute path of the file. The fact that the two are
divided in separate fields makes it easier to search by location or by
field name only, increasing the versatility of mining file data. In order
to populate the data on this table, LUARM relies on the 'lsof' utility
(Pogue et al, 2008). The utility is versatile and can record a variety of
events including file and network endpoints in real time. It exists for
an entire range of UNIX/Linux and MACOSX operating systems,
covering a large spectrum of computing devices.

The 'netinfo' table logs the creation and destruction of network
endpoints. In the context of LUARM, the term 'network endpoint'
refers to the operating system data structures employed to facilitate
network connectivity via the TCP/IP protocol suite (Socolofsky,
1991). Network endpoint activity is considered as live forensic data.
A series of table fields are used to record endpoint details ('sourceip',

'destip', 'sourceport' , 'destport' and 'transport' record source and
destination IP addresses, source and destination port and transport
protocol respectively). The fields 'sourcefqdn' and 'destfqdn' hold the
DNS (Mockapetris, 1987) resolved Fully Qualified Domain Name
(FQDN) for the source and destination hosts.

A small LUARM implementation detail concerning the 'sourcefqdn'
and 'destfqdn' fields is that they are not populated by the client
LUARM routines. In contrast, they are populated on the LUARM
server side. Due to the criticality of correct DNS data for the audit
records, the frequent DNS configuration errors (Barr, 1996), aspects of
DNS operational security (Bauer, 2003) and client performance, the
endpoint name resolution is left on the server side. This provides a
greater control on DNS derived data and does not rely on vulnerable
clients (malicious insiders or software vulnerabilities) for auditing
network connections.

Process execution activity is recorded in the 'psinfo' table (Figure 9).
This table records 'live' forensic data. The table includes both the
proces ID ('pid') and parent process id ('ppid'), so that process
execution flow can be traced back to the original process. In order to
speed up process execution searches, the LUARM engine also
separates the executed command ('command') from its arguments
('arguments'). One might like to search them separately in the process
of mining process execution data. The 'pcpu' and 'pmem' fields address
process over-utilization issue. 'pcpu' contains the CPU time used
divided by the time the process has been running (cputime/realtime
ratio), expressed as a percentage. 'pmem' is the ratio of the process’s
resident set size to the physical memory on the machine, expressed as
a percentage. The 'ps' UNIX/Linux utility (Pogue et al, 2008) is used
to collect process information. For all active processes (whose d*
temporal fields are NULL), LUARM updates in near real time these
two fields.

The 'hwinfo' table logs 'live' device connection and disconnection
events. All events generated by devices that connect to the Peripheral

Component Interconnect (PCI and PCI-Express) and Universal Serial
(USB) buses (Mueller, 2006). These two buses are commonly found
on a large array of computing devices, interconnecting various
peripherals such as portable storage media, as well as sound and video
interfaces amongst others. For instance, an audit reviewer or forensics
analyst might be interest to correlate file activity to a portable storage
medium connection, as part of an intellectual property theft scenario.
In that case, the 'hwinfo' table logs information in various fields that
help identify the attached device ('devstring', 'devvendor'), the bus the
device was connected to ('bus') and correlate the device attachment
event against a number of users that are logged into the system at the
time of the device attachment ('userslogged').

LUARM contains a small number of additional tables for house-
keeping functions that ar beyond the scope of this paper. The next
section demonstrates LUARM usage.

6 LUARM in action

Having a proposed structure and content for the various categories of
audit events as described in the previous section, we can now issue
sample SQL statements to illustrate how audit data mining is
performed. Figure 10 displays sample queries that demonstrate the
expressiveness of LUARM's audit record content and structure.

There are a few important observations to make about the example
LUARM SQL queries. The first one concerns the embedding of
system specific knowledge inside the statement. In essence, the third
example of Figure 10 defines a step of an insider trying to transfer a
sensitive file to a portable medium. One has to know the name of the
sensitive file 'prototype.ppt' and also the fact that '/media' is used as a
mount point for portable media for that host. Additional possible
destination locations could be specified by means of OR operators.
The use of the 'RLIKE' operator (RLIKE RegExp, 2008), always in

relation to the second and third examples of Figure 10. The operator
implements a regular expression (Friedl, 2002) type of match. Apart
from the conjunction operator (OR), regular expressions give the
specification polymorphic properties (one specification string, many
matching results), a desirable property for compact misuse detection
language statements.

Figure 10: Using SQL to mine data in LUARM

We have tested LUARM on a variety of simulated insider misuse
scenarios. The scenarios were derived by real world LUARM captured
data. However, permission to publish the original audit data was not
obtained by the organizations in question. Thus, we had to reconstruct
the misuse incidents by means of writing down a text based
description of each incident and ask a team of users to re-enact it under
a controlled IT infrastructure. The following paragraphs will present
one of these incidents and demonstrate how the correlational
versatility of the LUARM relational audit log structure can shed
forensic light into the actions of a malicious insider. The scenario is
provided below:

'Autobrake' Corp is a company designing car braking systems. Their
engineering department is the most information sensitive work area.
The braking system design process takes place, in high performance
Linux workstations, one for each design engineer. The engineers have
normal user rights to the workstations. Superuser rights (root) is given
only to the IT admin. The designs reside on the local hard drives of the
workstations and the company's IT policy forbids any transfer of

sensitive data to portable media. Autobrake's system administrator has
requested a salary raise various times. This has been denied by
management, as the company faces a declining car manufacturing
market. The system administrator is lured by a competing company
that asked him to deliver schematics of the new and revolutionary
Autobrake's RGX9 SUV braking system in return for a large amount
of money. Enjoying the trust of everyone and having full control of the
engineering CAD workstations, the system administrator decides to
take the offer of the competing company. He performs the intellectual
property theft by following a well designed approach which is
summarized below:

He carefully chooses the user account of a mechanical engineer
(username 'engineer3') that had some disputes over work issues with
management. He aims to avoid detection by means of masquerading as
the engineer in question.

After successfully masquerading as the engineer in the IT system he
uses a portable USB key to obtain the commercially sensitive RGX9
schematic, leaving only the traces of the engineer “actions”.

Assuming that a third party auditor manages the audit process and
monitors the logging (ensuring that the logging infrastructure works)
and that all Engineering workstations are monitored by LUARM, we
are now tasked to find the offender and clear the name of 'engineer3'.
The reader should consult the LUARM relational table structure
(Figure 9), in order to follow the SQL queries presented below.

A post-mortem forensic examination of an incident is a tedious
process. Due to the lack of space, we present here the basic reasoning.
We begin our investigation from the most important file, that of
RGX9, and the people that work on it. From the audit record of the
workstations with name 'proteas', we utilize LUARM to find out who
has been using the file:

mysql> select username,pid,cday,chour,cmin,location,filename from fileinfo
where filename RLIKE 'RGX9' OR location RLIKE 'RGX9' \G

From the many hits we get from the data base, we focus our attention
on the following ones:

*************************** 111. row ***************************

username: engineer3

pid : 8301

cday: 4

chour: 15

cmin: 30

location: /storage/users/engineer3/work/designs

filename:RGX9.jpg

...

*************************** 118. row ***************************

username: engineer3

pid: 28538

cday: 4

chour: 15

cmin: 32

location: /media/U3SAN03-12

filename: RGX9.jpg

The reason these file access patterns looked suspicious is that they
were different than the normal pattern of accessing the file by the staff
engineer. Normally, user 'engineer3' would access the file by means of
certain design and image editing applications, under its usual directory
(/storage/users/engineer3/work/designs). This time, however, things
look a bit different, if one follows the association of file access to
process execution, in order to confirm which programs performed the
file transaction. The following SQL queries achieve the desired
association:

mysql>select username,pid,command,arguments,cyear,cday,chour,cmin from
psinfo where username='engineer3' AND pid='8031' AND cyear='2011' AND
cday='4' AND chour='15' AND cmin='30;

*************************** 1. row ***************************

username: engineer3

pid: 8031

command: /bin/cp

arguments: work/designs/RGX9.jpg /tmp/

cyear: 2011

cday: 4

chour: 15

cmin: 30

mysql>select username,pid,command,arguments,cyear,cday,chour,cmin from
psinfo where username='engineer3' AND pid='8031' AND cyear='2011' AND
cday='4' AND chour='15' AND cmin='30;

*************************** 1. row ***************************

username: root

pid: 28538

command: mv

arguments: RGX9.jpg /media/U3SAN03-12

cyear: 2011

cday: 4

chour: 15

cmin: 32

Essentially, the previous results verify that the file was first copied
from the normal directory to /tmp and then was moved to the /mnt/usb.
At this point, a little bit of system specific knowledge comes into light,
as /mnt/usb is the usual mount point where Linux links portable
storage media to the filesystem. Hence, the question to raise is whether
a portal storage medium was connected to the workstation, prior to the
'mv' file transaction. The query result yields a positive answer:

mysql> select * from hwinfo where cyear='2011' AND cmonth='01' AND
cday='04' AND chour='15'\G

*************************** 1. row ***************************

hwdevid: 71

md5sum: a16e7386f14de769a7a9491da2071f5b

cyear: 2010

cmonth: 12

cday: 4

chour: 15

cmin: 30

csec: 28

devbus: USB

devstring: Cruzer Micro U3

devvendor: SanDisk Corp.

userslogged: engineer3,root

dyear: 2010

dmonth: 1

dday: 4

dhour: 15

dmin: 33

dsec: 38

This database hit seems to be in line with the actions of engineer3, as it
indicates a device connection before the execution of the 'mv'
command and a disconnection well after the mv command.

Thus, everything seems to point out that 'engineer3' violated the
company policy and transferred a sensitive file to a USB medium,
against the company IT regulations. However, this had been
categorically denied by the actual person. A good but non IT based
alibi for the staff engineer was that he exited the building with his
security card token around 14:50, returning back to his desk at 15:50, a
wide gap for him. Clearly, something else was going on and the clue
was the 'userslogged' field of the last LUARM result. This 'hwinfo'
LUARM table field contains the usernames for accounts that are

logged into the workstation at the time of the device connection. Apart
from 'engineer3' we note the root account being active, which is
clearly the only other choice that, under the circumstances, could have
performed the mount procedure.

Based on the time stamp of the mv operation, a careful investigation of
the root account actions reveals a key command execution, derived
from the 'psinfo' table:

mysql> select * from psinfo where pid='27865' AND cyear='2011' AND
cday='4' AND cmonth='1' AND chour='15' AND cmin >= '20' AND cmin <='33'
\G

*************************** 1. row ***************************

psentity: 97654

md5sum: 7067284f2e1aefc430339ef091b4e41b

username: root

pid: 27865

ppid: 26407

pcpu: 0.0

pmem: 0.0

command: su

arguments: - engineer3

cyear: 2011

cmonth: 1

cday: 4

cmin: 28

chour: 15

csec: 36

dyear: 2011

dmonth: 1

dday: 4

dhour: 15

dmin: 28

dsec: 39

The 'su' command is used routinely by administrators to switch user
credentials, in order to test environment settings and perform system
tasks (Garfinkel et al, 1996). However, it can be easily used as a
masquerading tool to covertly perform actions using the credentials of
somebody else.

A further investigation also found the USB key on the desk of the IT
administrator with the RGX9.jpg file. The hwinfo table device
identifier data ('devstring', 'devvendor') as well as the mount point
identifier (/media/U3SAN03-12) from the psinfo commands
contributed towards strengthening the final piece of the puzzle.

This case shows the versatility of the relational structure of the
LUARM record that showed the way from simple file operation to
related program execution and other events that can provide strong
evidence and lead to the misuser. In addition, LUARM has also been
used successfully to provide evidence about security incidents of
external origin (Magklaras, 2011). Thus, it offers a valuable
complement of existing logging mechanisms.

The only serious drawback of the prototype we encountered was the
fact that the prototype sampling interval of 100 ms is to slow and
actually misses executed processes. This occurred during our
controlled experiment and during the real incident recording phases.
Most commands that are not typed interactively (in batch mode) could
actually be a very important way to bypass the logging of execution
events, as they can occur in sub 100 ms cycles. Nevertheless, most of
the important evidence was logged in the majority of the cases.

The LUARM audit engine prototype is currently under constant
development as an open source audit engine, in order to improve its
operational security and audit speed performance. The authors
welcome feedback and participation to the development of its code
base. The prototype is not yet ready for production deployment, but it

should be suitable for experimentation and has already proved its value
on a number of insider IT misuse incidents.

7 Conclusions

The insider IT misuse problem is a real substantial threat to the health
of IT infrastructures. A very important tool to mitigate this type of
threat is an audit record which is specifically designed to address the
various needs of insider IT misuse detection, as well as complement
existing forensic tools when security specialists perform a post-
mortem incident examination. These specifications are not met by
traditional audit engines and dictate a detailed log of user actions at
file, process execution and network endpoint level stored in a
Relational Database Management System.

The file, process and network endpoint data provide a dynamic
forensic view of the system, a useful complement to existing forensic
tools that offer only static data in their majority. The relational storage
layer increases the correlational versatility amongst the different types
of audit data, as it is vital to be able to perform various associations
during the investigation of an incident (process to file, process to
network activity) and reliably relate actions to user entities. The results
are promising, showing a much better way to examine a system than
looking at static text files which are difficult to parse and even more
difficult to correlate.

8. References

Adelstein F. (2006), “Live Forensics: Diagnosing Your System without Killing it
First”, Comm. ACM, vol.49, no.2, 2006, pp. 63-66.

ANSI (1986), “American National Standard for Information System: Coded
Character Sets — 7-Bit American National Standard Code for Information
Interchange (7-Bit ASCII)”, ANSI X3.4-1986, American National Standards
Institute, Inc., March 26, 1986.

Bace R. (2000), “Intrusion Detection”, Macmillan Technical Publishing,
Indianapolis, USA, ISBN: 1-578701856, pp. 38-39 discuss the terms 'misuse

detection' and 'anomaly detection' in an intrusion specification context, pp. 47-66
discuss various audit record issues.

Barr D. (1996), “Common DNS Operational and Configuration Errors”, Internet
Engineering Task Force (IETF) Request For Comment (RFC) 1537, February 1996.

Bauer M. (2003), “Building secure servers with Linux”, O'Reilly & Associates,
ISBN: 0-596-00217-3: Chapter 6, pages 154-196.

Bishop M. (1995), “A Standard Audit Trail Format (1995)”, In Proceedings of the
1995 National Information Systems Security Conference, pp. 136-145.

Cha A.E. (2008), “Even spies embrace China's free market.”, Washington Post,
February15,2008:,www.washingtonpost.com/wpdyn/content/article/2008/02/14/AR2
008021403550.html (Accessed 03/03/2011)

Codd E. F. (1990), “The Relational Model for Database Management”, Addison-
Wesley Publishing Company, 1990, ISBN 0-201-14192-2.

Common Criterial Portal (2009), “The Common Criteria for Information Technology
Security Evaluation”, Version 3.1, Revision 3, July 2009. Part 2: Functional security
components,www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf
(Accessed 03/03/2011)

Connoly T., Begg C. (2004), “Database Systems: A Practical Approach to Design,
Implementation and Management”, Fourth Edition, International Series in Computer
Science, Addison-Wesley, ISBN-13: 978-0321210258.

CPAN-DBI (2010), “The Perl Database Interface (DBI) module” at the
Comprehensive Perl Archive Network (CPAN),search.cpan.org/~timb/DBI-
1.615/DBI.pm (Accessed 03/03/2011)

CPAN-HiRes (2010), “The Perl High Resolution Timer module” at the
Comprehensive Perl Archive Network (CPAN),search.cpan.org/~jhi/Time-HiRes-
1.9721/HiRes.pm (Accessed 03/03/2011)

DOD 5200.28-std (1985), “Department of Defense Trusted Computer System
Evaluation Criteria”, National Computer Security Center: Orange Book, DOD
5200.28-std, December 1985.

Friedl J. (2002), “Mastering Regular Expressions”, O'Reilly, ISBN 0-596-00289-0.

Furnell S. (2004), “Enemies within: the problem of insider attacks”, Computer Fraud
and Security, Volume 2004 Issue 7, pp. 6-11.

Garfinkel S, Spafford G. (1996), “Practical UNIX and Internet Security”, Second
Edition, O’Reilly and Associates, Sebastopol, CA, ISBN: 1-56592-148-1

Gerhards R. (2009), “The Syslog Protocol”, Internet Engineering Task Force (IETF),
Request for Comment (RFC) 5424, March 2009.

Greenemeier L., Choi C. (2010), “WikiLeaks Breach Highlights Insider Security
Threat”,Scientific American,www.scientificamerican.com/article.cfm?id=wikileaks-
insider-threat (Accessed 03/03/2011)

Hay B., Nance K., Bishop M. (2009), “Live Analysis Progress and Challenges”,
IEEE Security & Privacy, Volume 7, Number 2, pp. 30-37.

HP Portal (2003), “psacct process accounting misses some commands”, HP IT
,forums11.itrc.hp.com/service/forums/questionanswer.doadmit=109447626+128638
1845785+28353475&threadId=1413576 (Accessed 02/02/2011)

ISO/IEC (2008), Information Technology-- Database Languages – SQL: ISO/IEC
9075,www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=45498 (Accessed 03/03/2011)

Jackson W. (2007), “Under Attack: Common Criteria has loads of critics, but is it
getting a bum rap”, Government Computer News, date: 10/08/2007,
gcn.com/articles/2007/08/10/under-attack.aspx (Accessed 03/03/2011)

Love R. (2005), “Linux Kernel Development”, Second Edition, Sams Publishing,
ISBN: 0-672-32720-1: pp 98-107 discuss low-level details of the timer
implementation.

LUARM portal (2010),luarm.sourceforge.net/ (Accessed 03/03/2011)

Magklaras G., Furnell S., Brooke P. (2006), “Towards an Insider Threat Prediction
Specification Language”, Information Management & Computer Security, (2006)
vol. 14, no. 4, pp. 361-381.

Magklaras G., Furnell S. (2010), “Insider Threat Specification as a Threat
Mitigation Technique”, book chapter in “Insider Threats in Cyber Security”,
Advances in Information Security, Probst C.W., Hunker J., Gollman D., Bishop M.
(Ed), Springer, ISBN: 978-1-4419-7132-6, pp. 219-244.

Magklaras G. (2011), “Catching an undesired guest in the penguin /tmp room”,
Epistolatory Blogspot, epistolatory.blogspot.com/2011/02/catching-undesired-guest-
in-penguin-tmp.html (Accessed 03/03/2011)

Matthews J., Dow E., Deshane T., Wenjin H., Bongio J., Wilbur P. ,Johnson B.
(2008), “Running Xen, A Hands-On Guide to the Art of Virtualization”, Prentice Hall
Pearson Education, ISBN-13: 978-0-13-234966-6: pp. 1-26 are a comprehensive
introduction to the concept of virtualization.

Microsoft Portal (2009), “Timers, Timer Resolution, and Development of Efficient
Code”,download.microsoft.com/download/3/0/2/3027D574-C433-412A-A8B6-
5E0A75D5B237/Timer-Resolution.docx (Accessed 03/03/2011)

Mills D., Delaware U., Martin J., Burbank J., Kasch W. (2010), “Network Time
Protocol Version 4: Protocol and Algorithms Specification”, Internet Engineering
Task Force (IETF) Request For Comment (RFC) 5905, June 2010.

Mockapetris P. (1987), “Domain Names – Implementation and Specification”,
Internet Engineering Task Force (IETF) Request For Comment (RFC) 1035,
November 1987.

Monitorware's website (2009), www.winsyslog.com/en/product/ (Accessed
03/03/2011)

Mueller S. (2006), “Upgrading And Repairing PCs”, 17th Edition, Que Publishing,
ISBN: 0-7897-3404-4: Chapter 4 describes the PCI and PCI-Express buses, pages
372-378. Chapter 15 describes the USB bus. Pages 980-989.

NSTISSAM (1999), “The Insider Threat To US Government Information Systems”,
U.S. National Security Telecommunications And Information Systems Security
Committee, NSTISSAM INFOSEC /1-99.

Oracle Corporation (2010), “System Administration Guide:Security Services”,
Solaris 10 Operating System, Part No: 816–4557–19 , September 2010, pp. 559-
672,dlc.sun.com/pdf/816-4557/816-4557.pdf, (Accessed 03/03/2011)

Oracle MySQL portal (2010), www.mysql.com (Accessed 03/03/2011)

Pfleeger C., Pfleeger S. (2003), “Security in Computing”, Third Edition, Prentice
Hall, ISBN:0130355488: Page 6 contains the definition of the term “threat” in an
information security context.

Pogue C., Altheide C., Haverkos T. (2008), “Unix and Linux Forensic Analysis DVD
Toolkit”, Syngress, 2008, ISBN: 978-1-59749-269-0.

Potter C., Beard A. (2010), “Information Security Breaches Survey 2010 technical
report”,PriceWaterhouseCoopers/InfoSecurity,www.infosec.co.uk/files/isbs_2010_te
chnical_report_single_pages.pdf (Accessed 03/03/2011)

Probst C., Hunker J., Bishop M., Gollman D. (2009), “Countering Insider Threats”,
ENISA Quarterly Review Vol. 5, No. 2, June 2009, pp. 13-14.

Psacct utilities (2003), Utilities for process activity monitoring,
linux.maruhn.com/sec/psacct.html (Accessed 03/03/2011)

Richardson R. (2009), “2009 CSI Computer Crime and Security Survey”,
Comprehensive Edition, gocsi.com (Accessed 03/03/2011)

Rivest R. (1992), “The MD5 Message-Digest algorithm”, Internet Engineering Task
Force (IETF) Request For Comment (RFC) 1321, April 1992.

RLIKE RegExp (2008), “String Regular Expression Operator”, MySQL 5.1 Manual,
Oracle Corporation,dev.mysql.com/doc/refman/5.1/en/regexp.html (Accessed
03/03/2011)

Socolofsky T. (1991), “A TCP/IP Tutorial”, Internet Engineering Task Force (IETF)
Request For Comment (RFC) 1180 (Informational), January 1991.

Trusted BSD Project portal (2009), “OpenBSM: Open Source Basic Security Module
(BSM) Audit Implementation”,www.trustedbsd.org/openbsm.html (Accessed
03/03/2011)

Unicode (2006), “The Unicode Standard”, Version 5.0, Fifth Edition, The Unicode
Consortium, Addison-Wesley Professional, 27 October 2006. ISBN 0-321-48091-0.

	1. Introduction
	The security specialist translates the Security (and resulting monitoring policy) into a set of misuse scenario signatures, standard descriptions of IT misuse acts that describe the behavior of a user at process execution, filesystem and network endpoint level (Magklaras et al, 2006). The involvement of a specialist is necessary as the process of translating from security to monitoring policy is error prone. The misuse scenario signatures and collected audit data (Bace, 2000) from the IT infrastructure are fed into a misuse detection engine. For every unique userid in an authentication domain and signature of the 'Misuse Scenario signatures' repository, the engine produces a triplet encoded association in two distinct ways:
	3. Insider misuse detection auditing and its requirements
	8. References

